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1 Summary

A number of tools exist that allow engineers to construct models of embed-
ded systems. Models are expressed in a variety of languages including domain
specific languages. These models provide input to generators that (i) produce
code, test suites, views of components in the model and/or (ii) analyze or com-
pose models. Generators, however, are often difficult and expensive to develop.
Moreover, due to the safety critical nature of embedded systems, it is crucial
that generators be high assurance.

The FORGES project has developed technology for the automated synthesis
of model-based generators from language meta-models. Using partial evaluation,
Kestrel has demonstrated the synthesis of generators that are provably correct,
and that can be produced and modified with drastically less time and effort
compared with manual production.

The success of the project can be traced to two major contributions. The
first, a technology breakthrough, is a new tractable formulation of partial eval-
uation. The second is a collection of meta-models that serve as comprehensive
definitions of the semantics of widely-used commercial modeling languages.

2 Introduction and Motivation

In recent years there has been an increase in the use of “model-based” languages
and associated tools for the development of embedded systems. Examples in-
clude the MathWorks suite consisting of Matlab, Simulink and Stateflow as well
as languages in the Unified Modeling Language (UML) family including Stat-
echarts and languages like Specification and Description Language (SDL) used
primarily in telecommunications. Using one or more of these tools, an engi-
neer can develop, simulate and test a model before targeting it to a specific
hardware/software platform. A question that arises is: to what extent can the
mapping from model to concrete code be automated?

The same period has also seen the development of a number of analysis
tools for embedded systems. This includes tools for schedulability analysis,
configuration tools and model checkers. Each of these tools comes with its own
modeling language. This leads us to a second question: how can the these tools
be integrated in such a way that, for example, an engineer can develop a model
in Stateflow [7] and then apply the Spin model checker [3] to verify that the
model has or does not have a property of interest.

These two questions represent instances of a common and familiar problem,
which is how to translate from one language to another. It has become standard
to refer to a tool that does such a translation as a generator.

Figure 1 depicts some of the combinations of interest. There are many
more. Clearly writing a tool for each instance is not feasible. This is the
same problem encountered by compiler writers who address it by introducing
a common intermediate language thereby replacing a product of combinations
with a sum.
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Figure 1: Generator Combinations

At first glance, the task of producing some of these generators, whether
through an intermediate language or not, might not seem difficult. Stateflow,
for instance, is a state-machine language and intuitively, one might assume that
mapping Stateflow to C would be straightforward. However, this is not the case.
The apparent visual simplicity is misleading. Languages like Stateflow, Simulink
and Statecharts have surprisingly complex and subtle semantics. There are no
less than a dozen published semantic definitions for Statecharts.

What complicates matters further is that embedded systems are often safety
or financially critical and hence high assurance is essential for all the generators
that are used in their development. Obviously, code generators must be correct.
But, likewise, there is little value in a generator that connects, for example,
Statecharts with a model checker for verification purposes if one does not have
a high degree of confidence in the mapping.

Some readers may be puzzled by the implication that a Stateflow to C gen-
erator is an interesting problem, bearing in mind that there are at least two
commercial vendors that provide such tools. We contend, however, that it re-
mains an interesting problem. Ford, for example, uses Simulink and Stateflow
for the development of all their powertrain controllers. Surprisingly, very little
auto-generated code is used in production Ford vehicles. Models are developed
using Simulink and Stateflow and then translated by hand into C. The decou-
pling of model from code creates two problems. First, all the testing performed
on the model must be repeated for the C code. Second, according to Ford, the
model and code gradually diverge. When a problem arises, it is all too common
for an engineer to simply adjust the code but fail to reflect the change in the
model. It is at this point that “the model-based paradigm breaks down” [8].
Precisely the same problem has been expressed to us by a number of groups
involved in the development of embedded systems.



There are at least three reasons why auto-generated code is not used. The
first is that the quality of the auto-generated code (in terms of readability, code
size, etc.) is relatively poor. To be sure, vendors have worked hard to improve
the quality of their code, nevertheless, it is difficult to come close to the quality
of hand-generated code. Earlier we mentioned the subtlety in languages like
Stateflow and Statecharts. It is because of this subtlety that organizations like
Ford have a “style guide” for Simulink and Stateflow that effectively restricts an
engineer to a small subset of the languages. Moreover, engineers are encouraged
to use certain idioms in their models. Unlike a programmer, commercial code
generators cannot exploit the opportunities that arise by the restrictions to the
language and are not sensitive to the idioms used.

The second reason why auto-code generators are rarely used is that the gen-
erated code does not conform to the target architecture. It is rare that an
embedded system is developed solely inside the model-based paradigm. There
may be an off-the-shelf or custom kernel plus drivers and there may be con-
straints on the structure of the store, placement of variables and interfaces to
procedures that are difficult to match by a code generator.

There is an important point in this. We have seen that a code generator, for
example from Stateflow to C, must target not only a language but a platform
and we have also seen that different users choose to work with different subsets
of the languages and use different modelling idioms. The consequence is that
there is no universal Stateflow to C generator. There are as many generators as
there are groups that use the tools. Command line options and menu options
will not come close to providing sufficient flexibility. It seems Figure 1 vastly
underestimates the scale of the problem.

A third reason why auto-code generators are rarely used is the lack of cer-
tified tools for safety critical applications. Often if a tool is integral to the
construction of production software it must be certified as correct. Demonstrat-
ing a compiler is correct is difficult. If the code generator is not trusted then
testing or other V&V activities must be performed on the target code of the
generator and not the source.

It is worth pointing out that the need for a family of generators for fixed
source and target languages applies also when the target is a model checker.
Model checkers analyze models having finite state spaces whereas the source
languages typically have infinite state spaces. Therefore, an additional task for
a generator is to perform an abstraction that takes a model into a finite state
space. However, different abstractions are appropriate for different verification
tasks and consequently different generators are needed for different abstractions.

Summarizing, to facilitate the development of embedded systems and the
integration of embedded systems tools, there is a need for the capability to
rapidly develop families of high-assurance generators that produce high-quality
specialized code.



2.1 Generating Generators

The report proposes a novel approach to developing generators. Rather than
write generators, we advocate that they should be synthesized automatically.
More concretely, generators should be synthesized from meta-models for the
source and target language. By meta-model for a language we mean a precise
and formal specification of the semantics of the language. The remainder of
the report describes an approach to synthesizing generators centered around a
technique called partial evaluation.

The sections that follow present new mathematical foundations for partial
evaluation. This is a breakthrough contribution of the project and a key enabling
technolgy for generator synthesis. Earlier work on partial evaluation (see [4]),
while promising, has proven to be largely intractable in practice. See [1] for a
different approach to the partial evaluation of Matlab.

We also describe our work developing meta-models for Stateflow, Matlab
and a domain specific language for software radio. These meta-models represent
another major contribution of this project as they standalone as comprehensive
reference definitions of the semantics of the respective languages.

3 Partial Evaluation

Partial evaluation is a technique for specializing a program when some, but not
all, inputs are known. The effect is captured in the equations below. Let P be
a program with inputs z and y and S be the partial evaluator or specializer.
Then:

P(z,y) ==
S(P,Q?:t) :Px:t
Po—i(y) ==

In words, specializing P with = ¢ yields a program that takes only y as
input but returns the same result as P. Here P,—, is called the residual program.
It is a version of P specialized for a specific instance of . These equations also
characterize the correctness of partial evaluation. A simple example is shown in
Figure 2.

The algorithm on the left computes z¥. The algorithm on the right is the
residual program when the first is specialized for the fixed input y = 5. The
residual program is obtained by symbolically executing the program and sub-
stituting the possible values that y takes on at each point. Context dependent
simplification is then applied to reduce expressions and eliminate unreachable
code yielding a smaller and more efficient program.

The application of partial evaluation to translation and compilation has
been studied extensively in the literature [4]. In this paper we use the simplest
instance. With respect to the equations given above, assume P(z,y) is an inter-
preter or meta-model for some language L written in another language M. Here
we assume the argument x is a program in L and y is an input suitable for that



proc exp (z : Nat,y : Nat) : Nat = {
let
var z : Nat
in
z:=1;
while (y > 0) proc erp,_s (z : Nat) : Nat = {
while even y return z x ((z2)?)
T =% }
y:=y div 2
y=y—1
zi=zXx
return z

Figure 2: Algorithm for computing z¥ and its specialization for y = 5.

program. Specializing the interpreter with respect to a particular program ¢ in
L yields a residual program P,_; in language M. Thus, in effect, specialization
has translated a program in L into an equivalent program in M.

It is important to observe that the result of specialization is a program in
the same language as the interpreter.

The equations given earlier are a standard way of presenting the effect of
program specialization. Note, however, that they only constrain the value of
P,—; and do not uniquely determine what the specializer S actually computes.
Indeed, there are many programs that satisfy the constraints on P,—; that one
would not normally consider to be specializations of P. For instance, rather
than an imperative language, consider the A-calculus. Let P = A(z,y).M for
some term M. Then the Curried term P,y = Ay.P (N,y) for some z = N,
satisfies the equations but is not an interesting specialization of P.

What is needed, therefore, is a precise charactization of the transformation
S applied to compute P,—; from P. In the literature, this transformation is
presented as an algorithm that operates on the abstract syntax of P. The
problem is that for all but trvial languages, this transformation is subtle and
complex, and that complexity creates an obstacle to proving its correctness.

In the next section, we sketch a semantics-based theory of algorthims as flow-
graphs. This theory affords us the ability to specify the specialization transfor-
mation abstractly and in purely mathematical terms, thus making it possible to
prove the correctness of an algorithm that implements the transformation.

4 Behavioral Specifications

This section introduces behavioral specifications, a key innovation in the project.

Intuitively, a behavioral specification or BSPEC is a flow-graph, state machine
or transition system. More concretely, a BSPEC is a labeled graph. The vertices
of a graph are states and the edges are transitions. Each vertex is labeled with



a set of typed variables. These are the variables in scope at that point in the
program. Each edge is labeled with a logical formula. The formula denotes a
guarded command. It describes both when the transition can be taken and how
the variables change when the transition is taken. More precisely, the formula
classifies the relation between the values of the variables at the start of the
transition with those at the end. We adopt the convention that primed names
refer to the new value of a variable. This yields yields specifications much like
those used in Z [9]. See also Lamport’s TLA [5].

The most general definition of BSPECS is given using constructions from
category theory. The category theory explicates the connection between, on the
one hand, familiar operations on flow graphs and machines found in computer
science and, on the other hand, standard constructions from category. For this
paper, a simpler and less general definition is sufficient.

Definition 1 A BSPEC is a tuple (G, s, F, L) where
e (G is a directed graph
e s is the start vertex
e F is a set of final states
e L is a labeling function on the states and transitions such that

— for each vertex v, L(v) is a set of typed variable names

— for each edge e : v—>w, L(e) is a logical formula, 6, where the free
variables in 0 come from the disjoint sum L(v) + L(w) such that 0
classifies a relation between the values of the variables at v and the
variables at w.

Figure 3 shows a fragment of code in a context and the corresponding graph
and labeling. The graph has three states, a, b and ¢, and two transitions, f and
g. Each vertex is labeled with the names of the two variables in scope and the
transitions are labeled with logical formulas that encode the effect of the two
steps in the program.

4.1 BSPEcCS and Partial Evaluation

Next we formally define specialization as a transformation on BSPECS.

We begin with some terminology. A substitution is a conjunction of equations
of the form x; = t; where z; is a variable and ¢; is a term. A constant is a term
consisting solely of numbers, constructors and applications of constructors to
constants. For instance, if nil and cons are the usual constructors for lists,
then cons(1, nil) is a constant but cons(1,z) is not. A ground substitution is a
conjunction of equations of the form z; = ¢; where each ¢; is a constant. Given
a formula 6 and a substitution o, we write o(f) for the formula obtained by
applying the substitution o to 6. Semantically, o(8) = o A 6.
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z : Nat,y : Nat -
r:=x+1, |
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Figure 3: Program fragment in context, graph and labeling

The postcondition of a transition is the strongest formula that classifies the
values the variables can take on at the end state. Mathematically, given a
transition e : a— b, labeled #, the postcondition of 8 is the formula

Jvars(L(a)) .0

modulo priming of names. For instance, the postcondition of the second transi-
tion in Figure 3 is a formula where only z is free, namely

axII’yII.xII > yll/\l_ — l_II +yll

This, of course, simplifies to true. The ground postcondition of a transition @ is
the strongest ground substitution implied by the postcondition of the transition.
For instance, conjoining the substitution [z = 3 A y"" = 4] (a precondition) to
the second transition in the example gives a postcondition that simplies tox = 7.
This is a ground postcondition.

Definition 2 Given a BSPEC P = (Gp,sp, Fp, Lp) and a ground substitution,
o, for some of the variables labeling the initial state, sp, the specialization of P
with respect to o is BSPEC Q = (Gq, sq, Fg,Lg) defined inductively as follows:

® 8¢ = (S;D)U)
o L(s,) = L(s,) \ vars(o)

o Let (a,0) be a vertex in Gg, e : a—>b be an edge in Gp and p be the
ground postcondition of L(e) Ao. Then

— (b, p) is vertex in Gg



— (e,0,p) : (a,0) —> (b, p) is an edge in Gg

L(b, p) = L(b) \ vars(p)
L(e,o0,p) = Jvars(o),vars(p) . L(e)

b € Fp implies (b,p) € Fg

—(2]y)
Ny =y—1
h ANz =zxx

a € b c T T T
e )

m k yZO 2[|y 5

ANx' ==x

Ny =y/2

Figure 4: Graph and corresponding BSPEC, P, for exponential algorithm.

Figure 4 shows the BSPEC, P, for the body of the exponential algorithm
given earlier. Note that to simplify the figure, some pairs of assignments have
been combined into single transitions in the BSPEC.

Figure 5 illustrates the residual BSPEC, @), obtained by specializing the
algorithm in Figure 4 with the ground substitution [y = 5]. Figure 4 shows
both the new graph and its labeling.

5 Meta-modeling in Oscar

BSPECS underlie the theory and implementation of the specializer. However, a
goal of the project is that each meta-model should serve not only as input to the
specializer, but also as a reference document, made available to an application
engineer, that clearly and unambiguously defines the semantics of the language.
To that end, a meta-model must be as simple and as abstract as possible and
for that task BSPECS are inappropriate.

Instead, we have developed a simple procedural specification language called
Oscar. Oscar is a hybrid of an algebraic specification language and Dijkstra’s
guarded command language. The control structures include procedures, vari-
able declarations, assignments, guarded commands and iteration. A compiler
transforms each Oscar procedure into a BSPEC.



Figure 5: Specialization of exponential BSPEC for y = 5.
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6 Interpretations

As mentioned earlier, the result of specializing an interpreter with respect to a
particular program is a residual program in the same language as the interpreter.
In our context, this means that the result of partial evaluation is a BSPEC.
Having explicated the semantics of the input program as a BSPEC, the next
task is to map that semantic representation to the target language. For this
purpose we use the notion of an interpretation.

We should mention that there is an alternative approach where the inter-
pretation component is omitted. If, for example, the goal is to generate C, then
one could develop a specializer for C and write the interpreter/meta-model in
C. In this way, applying the partial evaluator would translate a model from
the source language directly to C. This option was rejected for two reasons.
First, C is a low-level language, and therefore, like BSPECS, inappropriate as a
meta-modeling language.

The second reason for not writing a specializer for a language like C stems
from the complexity of the language. It would be a difficult task to write a
specializer capable of performing all the necessary simplifications and inferences.

A lesson from this project is that higher abstraction simplifies specialization.
For instance, finite sets and maps are used extensively in meta-models. At an
abstract level, each of these types is defined by a theory with three or four oper-
ations and a handful of axioms. Reasoning about such types is straightforward.
By contrast, if one implements finite maps and sets in C, then the reasoning
becomes much more complex, as it involves state, the heap and pointers.

7 Meta-Models

7.1 Stateflow

Stateflow is a state machine modeling tool, similar to Statecharts [2], and inte-
grated into MATLAB’s Simulink [6] tool set. While the inspiration for Stateflow is
based on the simple and intuitively clear behavior of state machines, interacting
features and extensions have led to complex semantics.

State hierarchy States are organized as a tree structure. The substates of a
state may decomposed in parallel or sequentially. When a parallel decom-
posed state is entered (exited) all of the substates are entered (exited);
for sequential states only one substate is entered. The semantics of state-
flow is completely sequential and deterministic, based on complex rules
ordering entrance and exiting of states, and testing of transitions.

Junctions Transitions segments are edges between two types of nodes: states
and junctions. A transition is a path from a state to a state passing
through junctions. A backtracking search is used to identify the next
transition to traverse.

10
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Data Model Events and variables may be declared and scoped within a state.
Actions may be associated with the execution of transitions, entering/leaving
states, and include updating the values of variables, and invocation of
events. Stateflow supports a variety of types and operations some loosely
based on C others inherited from Simulink.

Recursive event invocation and early return Execution is event based. A
step of the Stateflow machine is initiated by an external event. However
execution of an action may broadcast a new event which leads to recursive
response to the event. Upon completion of the recursion, processing of the
pending event may or may not terminate.

Despite this complexity, Stateflow is widely used, but often organizations
restrict its use to a more intuitive and manageable subset. The semantics are
described in a reference manual, often relying on example. The MathWorks
implementation of Stateflow is considered the final arbiter of the semantics,
but users may be unaware that their interpretation differs from the MathWorks
implementation. We believe that our specification is an accurate, precise, and
understandable description of Stateflow semantics.

7.1.1 Static Semantics

The semantics of Stateflow is in two parts. The static semantics deals with the
representation of Stateflow charts used in the meta-model and the conditions
for a chart to be well-formed. Here we sketch aspects of the static semantics.

A model consists of a collection of machines, charts, states, etc. In the .mdl
file representation of a chart, each element is given a unique integer identifier.
We use Oscar’s predicative subtypes to define unique types for the various sorts
of elements in a model. In particular, we define the following collection of
predicates:

type Id = Nat

op isStateflowNode? : Id -> Boolean
op isMachineChartStateNode? : Id -> Boolean
op isMachine? : Id -> Boolean
op isChartStateNode? : Id -> Boolean
op isChart? : Id -> Boolean
op isState? : Id -> Boolean
op isEvent? : Id -> Boolean
op isJunction? : Id -> Boolean
op isTransition? : Id -> Boolean
op isData? : Id -> Boolean

In the static semantics, these functions are abstract in the sense that their
definitions are omitted. The definitions are given later when the .mdl file for a
particular chart is parsed.

With the predicates, we can define the subtypes.

12



type Id = Nat

type StateflowNode = (Id | isStateflowNode?)

type MachineChartStateNode = (Id | isMachineChartStateNode?)
type Machine = (Id | isMachine?)

type ChartStateNode = (Id | isChartStateNode?)

type Chart = (Id | isChart?)

type State = (Id | isState?)

type Event = (Id | isEvent?)

type Junction = (Id | isJunction?)

type Transition = (Id | isTransition?)

type Data = (Id | isData?)

Charts and states may have and and or children. For this we define an
Oscar disjoint sum type and two functions. One assigns children to a chart or
state and the other gives the parent of a state.

type Children = | Or (List State)
| And (List State)
| NoChildren
op children : ChartStateNode -> Children

op parentOfState : State -> ChartStateNode

Here, Or, And and NoChildren are the tags or constructors of the sum type.
Note, once again, that the functions children and parent0fState are abstract.
They are given definitions according to the chart being interpreted.

Transitions connect states and junctions. The destination of a transition
may be a state or a junction. Likewise, the source, if it exists, may be a state
or a junction.

type Destination = | State State
| Junction Junction

op sourceOfTransition : Transition -> Option Destination
op destinationOfTransition : Transition -> Destination

Transitions are labelled with up to four attributes.

Label field Description

event Event that causes the transition to be evaluated or
fired.

condition A predicate that must be true for the condition ac-

tion and transition to take place

condition action | If the condition is true, the action specified executes
and completes.

transition _action | After a valid destination is found and the transition
is taken, this action executes and completes.

13



We define the corresponding abstract functions.

op eventOfTransition : Transition -> Option Event
op conditionOfTransition : Transition -> Option Node
op conditionActionOfTransition : Transition -> Option Node
op actionOfTransition : Transition -> Option Node

Transitions are classified in one of three ways. Default transitions have no
start state. Inner transitions do not leave the scope of originating state and
whereas outer transitions do.

op defaultTransitions : ChartStateNode -> List Transition
op innerTransitions0OfState : State -> List Transition
op outerTransitionsOfState : State -> List Transition

The remainder of the static semantics follows the same pattern and deals
with attributes such as the data in the chart, the events that activate the chart
etc.

7.1.2 Dynamic Semantics

The other part of the Stateflow meta-model is the dynamic semantics. This is
a collection of Oscar procedures that collectively define an abstract interpreter
for Stateflow.

The execution of a Stateflow program is event driven. Informally, there is
an “interpreter” or “machine” that sits waiting for an event. When an event
happens, the interpreter seeks a transition waiting for that event where the
transition originates from an active state. The transition may have a guard
associated with it. If the guard is absent or evaluates to true, an optional
action associated with the transition is activated. The machine advances to the
destination state by setting the source state inactive and the target active.

The behaviour of the interpreter is complicated by a number of factors. We
list some below.

1. States are hierarchical. When an event happens the interpreter starts from
the root of the hierarchy and moves inwards.

2. Actions may be associated with both states and transitions.

3. There can be not just one, but two actions associated with a transition.
One is executed when the condition evaluates to true. The other is exe-
cuted when the transition is “valid”.

4. Or states typically include junction nodes. The transition from one state
to another cannot be taken until all conditions for the segments from the
source state through the junctions to the destination state are valid. If
one discovers in the last segment that the transition cannot take place,
Stateflow backtracks looking for another path. Along the way, condition
actions may have been executed.
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5. There may be transitions at different levels and between levels of the
hierarchy.

6. The execution of an event and the transition from one state to another can
be premempted if an action for a transition is itself an event broadcast.
In such circumstances, the processing of the first event is suspended until
processing of the second is complete.

The Oscar procedures defining the dynamic semantics for Stateflow corre-
spond roughly with the various paragraphs in the section of the Stateflow User’s
Guide titled “Semantic Rules Summary for Stateflow”. That is, there are proce-
dures for entering a chart, executing an active chart, entering a state, executing
an active state, exiting a state, executing a set of flow graphs etc. This corre-
spondence is an important aspect of the Kestrel approach.

Figure 7 defines the Oscar procedure for exiting a state. It serves to illus-
trate a number of Oscar constructs. In particular, lines 7 to 18 give a case
construct. Note that the guard of an alternative may bind a value to a variable.
For instance, the guard | var (andStates:List State) And andStates ->
is satisfied when (children state) is a list of and states in which case the
variable andStates becomes bound within that alternative.

A second fragment of the Oscar semantics for Stateflow appears in Figure 8.

7.1.3 Validating the meta-model

A key step to ensuring the correctness of a generator is validating the meta-
model upon which the generator is based. For each of our Stateflow meta-
models, this is achieved by comparing the behavior of a representative collection
of charts when run in the MathWorks environment with their behavior when
run under the interpreter.

The comparison is made by running MATLAB in parallel with a second pro-
cess that runs the meta-model instantiated with a chart. A Stateflow proxy
S-function has been written in C. The S-function is added to the Simulink dia-
gram in such a way that the input signals to the chart are copied to the proxy
(see Figure 10). When activated, the proxy collects data from its input ports
and sends it through a socket to the process running the interpreter. The in-
terpreter executes the chart with the given data, collects the output and sends
it back to the proxy. This is illustrated in Figure 9. The output signals from
the chart and the proxy are then compared within Matlab by plotting them
side-by-side.

7.2 MATLAB

The MATLAB to C code generator was motivated by the need to automate the
implementation of signal processing applications from MATLAB models at SwRI,
a contractor providing an Open Experimental Platform for the MoBIES project.

SwRI developed an analytical framework and implementation architecture
for the development of reconfigurable signal classification systems. These sys-
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proc exitState (state : ChartStateNode, event : Event):

let

var rv: ReturnValue
var ebrc: EBRCondition
var childState : State

in
case

case

(children state)
NoChildren -> skip
var (andStates:List State) And andStates ->
do childState in (reverse andStates)
rv := exitState (childState, event)
if ~(is0K? rv) -> return rv
var (orStates : List State) Or orStates ->
do childState in (reverse orStates)
if isActive? childState ->

rv := exitState (childState, event)
if ~(is0K? rv) -> return rv
break

(exitActionDfState state)
var (node:Node) Some n ->

ebrc := (true, state)

rv := execute (node, event, ebrc, state)
if ~(is0K? rv) -> return rv

assign (stateName state, mkBool false)
return 0K

ReturnValue

e If this is a parallel state, and one of its sibling states was entered before
this state, exit the siblings starting with the last-entered and progressing

The execution steps for exiting a state are as follows:

in reverse order to the first-entered.

e If there are any active children, perform the exit steps on these states in

the reverse order they were entered.

e Perform any exit actions.

e Mark the state as inactive.

Figure 7: Semantics of Exit State
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1 proc executeActiveState (state : State, event : Event): ReturnValue {

2 let

3 var result : ReturnValue

4 var childState : State

5 in

6 if “((outerTransitions0OfState state) = []) ->

7 result := executeFlowGraphs(state, outerTransitionsOfState state, event)
8 if ~(isFail? result) -> return result

9 result := executeDuringAndOnActions (state, event)

10 if “(is0K? result) -> return result

11 if “((innerTransitionsOfState state) = []) ->

12 result := executeFlowGraphs(state, innerTransitionsOfState state, event)
13 if ~(isFail? result) -> return result

14 case (children state)

15 | NoChildren -> return OK

16 | var (andStates:List State) And andStates ->

17 do childState in andStates

18 result := executeActiveState (childState, event)

19 if ~“(is0K? result) -> return result

20 return 0K

21 | var (orStates : List State) Or orStates ->

22 do childState in orStates

23 if

24 | ~“(isActive? childState) -> continue

25 | isActive? childState ->

26 result := executeActiveState (childState, event)

27 return result

28 abort ("Active OR State: " ++ (name state) ++ " had no active child")

The execution steps for executing an active state are as follows:

e The set of outer flow graphs is executed (see Executing a Set of Flow
Graphs). If this causes a state transition, execution stops. (Note that this
step is never required for parallel states.)

e During actions and valid on-event actions are performed.

e The set of inner flow graphs is executed. If this does not cause a state
transition, the active children are executed, starting at step 1. Parallel
states are executed in the same order that they are entered.

Figure 8: Semantics of Execute Active State
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tems are used to autonomously detect incoming signals of interest in radio com-
munication traffic. The analytical framework involves signal processing opblocks
that are combined to build feature extractors to analyze incoming signals, and
classifier blocks that are combined to build classification rules that partition
the feature space into classification regions. The implementation architecture
is closely aligned with the analytical framework, consisting of software compo-
nents that are combined to implement the feature extractors and classification
rules, and a feature scheduler that selects the next feature extractor to run and
initiates its execution.

Kestrel’s MATLAB to C code generator automates the implementation of
the signal processing blocks from the MATLAB models used in the analysis. The
code generator is based on the partial evaluation of a meta-model of the MATLAB
language, in the same way as the code generator for Stateflow.

The SwRI signal classifier models include information about the data types
and desired function signatures of the signal processing blocks. This information
is also extracted from the models and used by the code generator.

7.2.1 The MATLAB language

MATLAB is a system for technical computing that integrates interactive compu-
tation, visualization, and programming. Over the years, the MATLAB language
has evolved to support many applications through domain-specific libraries, or
toolbozes.

The basic data element in MATLAB is an array that does not require di-
mensioning. There are no variable declarations, and function definitions do not
include parameter types. For example:

function [x, y] = f(a, b)
x = sum(a);
y =x + b;

end

If a and b are arrays with dimensions my X n; and ms X ns, with m; > 1, then
x will be of dimensions 1 x n; and y will have dimensions 1 X n,. The function
will fail unless mo = 1 and either ny = n; or ny = 1, but that is not expressed
in the code.

Array variables in MATLAB share the same name space with built-in func-
tions, and it is possible to redefine built-in functions locally as array variables.
For instance, the built-in i is the complex unit, but it does not conflict with a
loop variable i in a program, as shown below:

x =3+ 2 % 1i; // complex unit
for i = 1:10

x = (x + 1).72; // loop variable
end
X =x - i; // i =10
clear i;
X = 1i; // complex unit
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Array variables may also change type as new data are assigned to them. For
instance:

x(1) = 2; // 1x1, double
x(2) = i, // 1x2, complex (double)
x(2,1) = 3; // 2x2, complex (double)

The features of the MATLAB language facilitate rapid prototyping and the
writing of generic and intuitive programs. On the other hand, they require the
runtime environment to support dynamic types and dynamic memory manage-
ment.

7.2.2 MATLAB meta-model

The meta-model developed for MATLAB is designed to capture those features
that are relevant to SwRI’s signal processing blocks. Some features of the meta-
model are the following;:

Default base types Array variables in MATLAB may have different base types.
The meta-model includes default base types such as Real, Int, Complex.

External base types Base types can be extended through parameterized ex-
ternal base types, with specified storage size, alignment, and a mapping
to a name in the target language (in this case, C). The default Real, Int,
Complex base types are also associated with specific external types in the
meta-model. The extensibility of the base type allows data types to be
imported from SwRI’s signal classifier models. The result of arithmetic
operations is always converted to one of the default types.

Arrays and dimensions One of the most extensive parts of the meta-model is
a set of operations to calculate the base type and dimensions of a MATLAB
expression. These operations depend on the expression and on global
variables representing the current bindings of variable and function names
in the interpreter.

Bindings The meta-model contains global lists of bindings of names to ad-
dresses, and of addresses to reference types. These lists are initialized
with the names, addresses and types of built-in MATLAB functions. Names
that are bound to variables during interpretation are added to the head of
the list, so the statement i = 1 will allocate memory for an integer vari-
able, add the bindings of i to the allocated address, and of the address
to the reference type (array, base type integer, dimensions 1 x 1), making
the built-in complex unit operator i inaccessible until the variable i is
cleared.!

Function classes Functions are added to the bindings list with a reference
type that allows the type of the return value(s) to be calculated from

1The complex unit is a built-in function and not a constant, because it cannot be cleared.
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the function arguments. The meta-model includes reference types for the
following function classes:

e Pointwise functions, with a return type that has the same dimensions
as the arguments, and the same or a different base type—e.g. y =
abs(x), where a complex array x produces a real array y with the
same dimensions.

e Constant functions, with a constant return type—e.g. y = i, where
the return type is always the same for the built-in function i.

e Strength reductions, where the return type is reduced along the first
non-trivial dimension—e.g. y = sum(x), where a real 2 x 3 array x
produces a real 1 x 3 array y.

e Special matrices, such as ones(3) or zeros(5,6), where the type is
a function of the input arguments (real with dimensions 3 x 3 and
5 x 6 respectively).

The function class must be given for each function (built-in or external)
that is added to the bindings lists. The function class is used to select the
operation in the meta-model that calculates the base type and dimensions
of the function’s return value(s) from its arguments. If required, the meta-
model can be extended with new classes to account for new and specialized
functions (e.g. a histogram class for the MATLAB built-in hist function and
all its variations, so hist(x) returns a 1 x 10 array, hist (x,n) returns a
1 X n array, etc.).

Memory model The meta-model includes an internal API for memory man-
agement in the form of Alloc and Free statements that the interpreter
generates as required. The current meta-model allocates memory for new
variables on a private stack, and their addresses are their positions on that
stack. External variables (such as function parameters and return values)
are assumed to be preallocated, and their addresses are handles to the
corresponding variables in the target language. If required, the internal
API allows other memory models to extend or replace the private stack
in the meta-model.

Interpreter loop The main body of the meta-model is a loop that processes
the first statement in the program, and either interprets it or replaces it
with a simpler statement or sequence of statements to be interpreted in the
next pass. This applies to control structures (for — while — if), memory
allocation (assignment to new variable — allocation + assignment), etc.

Expression simplification Assignment statements that require memory al-
location for intermediary results during the evaluation of the right-hand
side are replaced with a sequence of assignments to temporary variables,
followed by a statement where the intermediary results are replaced by
references to the temporary variables. For example, if all variables are
1 x n arrays, then the assignment
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y=a .¥b .xc .xd+e .xf .xg . h;

will be replaced by

templ = a .x b .*x c .* d;
temp2 = e .x f .x g .* h;
y = templ + temp2;

clear temp2;

clear templ;

The assignments to templ and temp2 will be prepended with memory
allocation statements and then further simplified in subsequent iterations.

Type inference The type of each variable in the program is inferred at the
time the variable first appears on the left-hand side of an assignment. The
types of variables that appear in a function header (argument or return
value) cannot be inferred and must be provided separately in a types file
provided for each function.?

C code generation The generation of C code from the interpretation of a
model in OSCAR requires an additional translation (or interpretation) step
to go from OSCAR to C. This step includes C-specific transformations such
as (1) the generation of calls to C functions external to the meta-model
and (2) the generation of references to C variables (automatic, or allocated
on the private stack) from the variables in the model.

7.2.3 Validating the meta-model

The validation of the MATLAB meta-model was performed by applying it to
generate C code from the MATLAB opblocks in SwRI’s Ethereal Sting experiment
E4. The generated opblocks were then used to replace SwRI’s C opblocks in a
signal classification system and to process a representative set of signals provided
by SwRI.

SwRI’s signal processing opblocks are comparable to Simulink’s Embedded
MATLAB Function blocks. These blocks support a subset of the language for
which the MathWorks tools can generate efficient embeddable code.

The advantage of Kestrel’s approach is flexibility. MathWorks tools support
a limited set of features that cannot be easily extended by the user: for instance,
the MathWorks tools do not allow a variable to be redefined with a different
type within a function (which is more restrictive than Kestrel’s current meta-
model). The set of features supported by the Kestrel tools can be extended by
changing the meta-model—e.g., adding new function classes such as histogram,
or new memory models to match the user’s preferred coding style.

2The information in the types files is also available in the SwRI models, and may be
extracted automatically in the future.
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7.2.4 Lessons learned

One lesson learned in the development of the MATLAB meta-model is that it
may be more effective to specify in advance the subset of the language that will
be supported in the meta-model; application-specific meta-models can be made
more complete and can generate more efficient code.

Another lesson learned is that most features should be modeled in the higher-
level interpreter, independently of the target language, to maximize flexibility
and reuse and to minimize translation steps. For instance, one feature that
proved problematic was to decide which variables should be assigned integer
or double base types in C. A simpler solution would be to model exactly the
semantics of MATLAB, by making them all double and making them compare
equal when their absolute difference is smaller than eps.?

7.3 SCRAM

The third meta-model is for a language that has become known as the “Software
Controlled Radio Abstract Machine” or SCRAM.

The SCRAM is the other half of the analytical framework developed by
SwRI for describing signal classification systems. As discussed in the section
on the MATLAB meta-model, a signal classifier is a data-flow algorithm. Using
graphical editing tools developed by other MoBIES participants, a user draws
a data-flow diagram by connecting instances of standard blocks. For instance,
there are basic blocks for computing FFTs, peak detection, Kurtosis etc. The
behavior of each block is defined both by a MATLAB function, for testing, and by
a C++ class, for execution on the target platform. SwRI developed a runtime
system for executing the data-flow graphs on the target platform. The runtime
system takes an XML description of the data-flow diagram as input, statically
determines an execution order for the diagram, creates instances of the classes
for the blocks, allocates buffers and then activates the code for each instance
according to the execution order.

The SCRAM represents an alternative to the SwWRI runtime. It defines an
abstract machine for executing the flow graphs. Using a meta-model for the
SCRAM we have synthesized a generator that takes the XML representation
of the data-flow diagram for a signal analyzer and generates a C program that
allocates buffers between the block instances and calls the blocks in an order
consistent with the data-flow.

8 Assessment

There are a number of metrics for assessing the effectiveness of the approach.

3The semantics of MATLAB 7 has made support for integer arithmetic less problematic: in
MATLAB 6, if i is an integer variable, then i = i + 1 would result in a double; in MATLAB 7,
all terms on the right-hand side are rounded in expressions involving integer variables, so i =
i + 1 will result in an integer (and so will as i = i + 0.5, contrary to C intuition).
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e Code quality
e Time to develop meta-models

With respect to quality of the code produced by the Stateflow to C generator,
according to the midterm evaluations performed by Bill Milam at Ford Research,
the approach outlined above produced code that is typically more readable and
has a footprint that is comparable or smaller than code generated by commercial
tools available from either MathWorks or dSpace. The following quote appears
in Bill Milam’s midterm report to DARPA:

The surprising result for us and Kestrel was the quality and size of
the code generated. It has taken both dSpace and the MathWorks
many years to develop their respective code generation tools. Kestrel
took less than two years. In addition, because it is based on an
analytic approach to generating the code generator, it is relatively
easy to extend the supported Stateflow language and create a new
code generator. We believe this approach is extremely promising
and hope that commercial tool vendors will take notice.

At the time of writing, we are not aware of the results from the final evalu-
ation, but since the midterm, the partial evaluator has been made 1000x faster
than the initial prototype. It has also been improved to eliminate dead code
and generate more structured C than the prototype. It is reasonable to assume
that a comparison with commercial tools would favor the approach outlined in
this report.

With respect to the Matlab to C generator, Denise Varner, an Institute
Scientist at SwRI and the OEP leader reports that:

...the Kestrel-generated C code produced exactly the same numer-
ical results as the our handwritten C code for 22 out of 45 opblocks
in experiment E4. We considered this result very positive, since
it reduces the effort needed to code and maintain the C opblocks
by 50%. The remaining blocks used features not supported in the
Kestrel meta-model, such as cell arrays or Matlab specific graphical
operations, or used Matlab built-in functions which could later be
replaced by public domain libraries. Simple restrictions on Matlab
style and supporting libraries would give essentially complete cov-
erge.

Rather than compare the quality of an individual generator with that of a
third party, arguably a more important criterion for assessing the approach out-
lined in this report is to compare the effort required to produce new generators.
It is worth pointing out that the simplest of the three Stateflow meta-models
was prepared and validated in less than three person-weeks.

According to standard software metrics, the effort to produce an application
is proportional to its size measured as a number of lines. The most comprehen-
sive of the Stateflow meta-models developed in the project has less than 1500
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lines. Understandably, vendors do not provide statistics on the size of their
tools or on their maintenance costs, but one would be surprised if a handwrit-
ten Stateflow to C generator would have fewer than 10z that number of lines,
and based on our experience writing compilers, the multiplier is probably closer
to 100. Even with the more conservative figure, the payoff exceeds a 10-fold
improvement,.

Further evidence supporting the approach outlined in this report is provided
by an experiment performed by Paul Griffiths at UC Berkeley, a member of the
MoBIES Automotive OEP team.

Mr. Griffiths used Kestrel’s Stateflow to C generator and observed that the
code didn’t behave the way he expected. The values of some variables were
not changing when he thought they should. It boiled down to understanding
Stateflow during actions. These are actions associated with Stateflow states
and executed when Stateflow fails to find a valid transition leaving that state.
Mr. Griffiths was under the impression that the action executed whether or
not a transition was taken. Comparing the output of the generated code with
a simulation inside MATLAB confirmed that former interpretation was correct.

Mr. Griffiths was then directed to the procedure in our semantic definition
of Stateflow dealing with during actions. As discussed earlier, the definition is
a formal transcription of the text in the “Semantics” section of the Stateflow
manual. Hierarchies are omitted in the subset we are working with at present.

The semantics contains the fragment:

test := executeFlowGraph(outer state);
if “test -> executeAction (duringAction state)

Mr. Griffiths then changed the semantics by omitting the conditional so that
during actions would be executed whether or not a transition is taken.

He then ran the generator again, using the same chart but with the mod-
ified meta-model. This yielded C code for his chart that behaved as he had
understood the semantics to be.

It is interesting that the semantics of Stateflow wasn’t clear even to an expe-
rienced user. Also, while we are not advocating that one change the semantics
of Stateflow, the experiment demonstrates how a meta-model can be modified
to yield different generators. It also demonstrates the insidious problems that
can arise for V&V when Stateflow or Matlab is provided as a model for manual
development of C code.
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A Stateflow Example

Figure 11 shows a Stateflow diagram taken from the models developed by the
automotive OEP. It defines a transmission shift scheduler. The remainder of
this appendix gives the Kestrel generated C code.
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/* Variables */

int test;

int chart_shift_schedule_2;
int state_third_gear_3;

int state_first_gear_4;

int state_shifting6_5;

int state_shifting5_6;

int state_shifting4 7;

int state_shift_pendingl_8;
int state_shift_pending2_9;
int state_shift_pending3_10;
int state_shiftingl_11;

int state_shifting2_ 12;

int state_shifting3_13;

int state_fourth_gear_14;
int state_second_gear_15;
int state_shift_pending6_16;
int state_shift_pendingb_17;
int state_shift_pending4_18;
int to_gear;

int gear;

float
float
float

v;
shift_speed_12;
shift_speed_21;

int ctr;
int DELAY;

float
float
float
float

shift_speed_23;
shift_speed_32;
shift_speed_34;
shift_speed_43;

/* Function definitions */

void forgesla () {
if (chart_shift_schedule_2) {
if (state_third_gear_3) {

test = V >= shift_speed_32;

if (test) {
state_third_gear_3 = 0;
state_shift_pending5_17 = 1;
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ctr = 0;
to_gear = 3;
} else {
test = V > shift_speed_34;
if (test) {
state_third_gear_3 = 0;

state_shift_pending3_10 = 1;

ctr = 0;
to_gear = 3;
}
}
} else {

if (state_first_gear_4) {
test = V > shift_speed_12;
if (test) {
state_first_gear_4 = 0;
state_shift_pendingl_8 = 1;

ctr = 0;
to_gear = 1;
}
} else {

if (state_shifting6_5) {
test = gear == 3;
if (test) {
state_shifting6_5 = 0;
state_third_gear_3 = 1;
to_gear = 3;
} else {

test = V > shift_speed_34;

if (test) {
state_shifting6_5 = 0;

state_fourth_gear_14 = 1;

to_gear = 4;
}
}
} else {
if (state_shifting5_6) {

test = V > shift_speed_23;

if (test) {
state_shiftingb_6 = 0
state_third_gear_3 =
to_gear = 3;
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} else { test = ctr > DELAY;

test = gear == 2; if (test) {
if (test) { state_shift_pending2_9 = 0;
state_shifting5_6 = 0; state_shifting2_ 12 = 1;
state_second_gear_15 = 1; to_gear = 3;
to_gear = 2; } else {
3 test = V >= shift_speed_23;
} if (test) {
} else { state_shift_pending2_9 = 0;
if (state_shifting4_7) { state_second_gear_15 = 1;
test = gear == 1; to_gear = 2;
if (test) { } else {
state_shifting4 7 = 0; ctr = ctr + 1;
state_first_gear_4 = 1; 3
to_gear = 1; 3
} else { } else {
test = V > shift_speed_12; if (state_shift_pending3_10) {
if (test) { test = V >= shift_speed_43;
state_shifting4 7 = 0; if (test) {
state_second_gear_15 = 1; state_shift_pending3_10 = 0;
to_gear = 2; state_third_gear_3 = 1;
} to_gear = 3;
} } else {
} else { test = ctr > DELAY;
if (state_shift_pendingl_8) { if (test) {
test = V >= shift_speed_21; state_shift_pending3_10 = 0;
if (test) { state_shifting3_13 = 1;
state_shift_pendingl_8 = 0; to_gear = 4;
state_first_gear_4 = 1; } else {
to_gear = 1; ctr = ctr + 1;
} else { }
test = ctr > DELAY; }
if (test) { } else {
state_shift_pendingl_8 = 0; if (state_shiftingl_11) {
state_shiftingl_ 11 = 1; test = gear == 2;
to_gear = 2; if (test) {
} else { state_shiftingl_11 = 0;
ctr = ctr + 1; state_second_gear_15 = 1;
3 to_gear = 2;
} } else {
} else { test = V >= shift_speed_21;
if (state_shift_pending2_9) { if (test) {
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state_shiftingl_11 = 0; to_gear = 4;
state_first_gear_4 = 1; 3
to_gear = 1; } else {
¥ if (state_second_gear_15) {
¥ test = V > shift_speed_23;
} else { if (test) {
if (state_shifting2_12) { state_second_gear_15 = 0;
test = gear == 3; state_shift_pending2 9 = 1;
if (test) { ctr = 0;
state_shifting2 12 = 0; to_gear = 2;
state_third_gear_3 = 1; } else {
to_gear = 3; test = V >= shift_speed_21;
} else { if (test) {
test = V >= shift_speed_23; state_second_gear_15 = 0;
if (test) { state_shift_pending4_18 = 1;
state_shifting2 12 = 0; ctr = 0Q;
state_second_gear_15 = 1; to_gear = 2;
to_gear = 2; 3
} }
} } else {
} else { if (state_shift_pending6_16) {
if (state_shifting3_13) { test = V > shift_speed_34;
test = gear == 4; if (test) {
if (test) { state_shift_pending6_16 = 0;
state_shifting3_13 = 0; state_fourth_gear_14 = 1;
state_fourth_gear_14 = 1; to_gear = 4;
to_gear = 4; } else {
} else { test = ctr > DELAY;
test = V >= shift_speed_43; if (test) {
if (test) { state_shift_pending6_16 = 0;
state_shifting3_13 = 0; state_shifting6 5 = 1;
state_third_gear_3 = 1; to_gear = 3;
to_gear = 3; } else {
3 ctr = ctr + 1;
} }
} else { }
if (state_fourth_gear_14) { } else {
test = V >= shift_speed_43; if (state_shift_pendingb5_17) {
if (test) { test = ctr > DELAY;
state_fourth_gear_14 = 0; if (test) {
state_shift_pending6_16 = 1; state_shift_pending5_17 = 0;
ctr = 0; state_shifting5_6 = 1;
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to_gear = 2; 3

} else { 3
test = V > shift_speed_23; ¥
if (test) { :
state_shift_pending5_17 = 0; }
state_third_gear_3 = 1; }
to_gear = 3; }
} else { }
ctr = ctr + 1; return ;
} } else {
¥ to_gear = 1;
} else { gear = 1;
if (state_shift_pending4_18) { V=1
test = ctr > DELAY; shift_speed_12 = 1;
if (test) { shift_speed_21 = 1;
state_shift_pending4_18 = 0; DELAY = 3;
state_shiftingd 7 = 1; chart_shift_schedule_2 = 1;
to_gear = 1; state_first_gear_4 = 1;
} else { to_gear = 1;
test = V > shift_speed_12; return ;
if (test) { 3
state_shift_pending4_18 = 0; return ;
state_second_gear_15 = 1; ¥
to_gear = 2;
} else {
ctr = ctr + 1;
}
}
return ;
} else {
abort
("Active OR State: shift_schedule had no active child");
return ;
}
return ;
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B Matlab Example

Figure 12 is an example of Matlab code for an opblock in SwRI’s E4 experiment.
The lines prefixed with KI have been commented out by Kestrel for two reasons.
First, the check for valid data has been removed to be consistent with the SwRI
hand coded C++ version of the opblock. The second change is the assignment
of 0.0 to tempsum rather than 0. This reflects the fact that the Matlab meta-
model distinguishes integers from floats and requires that all occurrences of a
variable have the same type.

Figure 13 shows the abstract syntax for the OBAverageFilter after parsing.
Finally, Figure 14 shows the C code generated for OBAverageFilter.
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function outData=0BAverageFilter(inData,nFilterSize)

% Written by:  John Signorotti

h

% Syntax: outData=0BAverageFilter(inData,nFilterSize)

h

% Originated: March 2003

% Southwest Research Institute

% 6220 Culebra Road

% San Antonio, TX 78238

h

% Purpose: Implements running averagea filter

h

% Inputs: inData: data to be averaged, real or complex, vector
h

% Parameters: nFilterSize: number of points to average over

h

% Environemnt: None

h

% Output: outData: running average of input data, real or complex, vector

Note that output is shorter than input by
(nFilterSize-1) points

Wbl T Tolo o To

hhhhh

% Developed by Southwest Research Institute

% $hAuthor: $

% $hArchive: $

% $%Revision: $

% sk sk ek sk ok sk ok sk ok ok sk ok sk ok s ok sk sk ok o koK o oK o s oK sk ks oK s s ks s sk s sk ks sk s ok sk ks ok sk ok ok sk ok ok ok ok ok ok

% Check for valid data

% KI if (isnan(inData(1)) | isnan(nFilterSize))
% KI outData=Nal;

% KI return;

% KI end

% KI tempsum=0; / Temporary variable for holding filter outputs
% KI begin change

tempsum=0.0;

% KI end change

outData=zeros(1,length(inData)-nFilterSize); % Storage for output data
for i=1:length(inData)-nFilterSize+1 % Loop over each Input sample
for j=1:nFilterSize % Loop over range of outDataraging
tempsum=tempsum+inData(i+j-1); % Accumulate data
end
outData(i)=tempsum/nFilterSize; % Divide by filter length to get average
% KI tempsum=0; % Reset temporary varialbe

% KI begin change
tempsum=0.0;

% KI end change

end

return;

Figure 12: SwRI OpBlock for OBAverageFilter
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psl {
import /Matlab/Oscar/MatlabToC/Matlab

op target : String
def target = "AverageFilter"

op targetFileName : String
def targetFileName = target ++ ".h"

op varDecls : VarDecls
def varDecls = []

op includes : List String
def includes = ["forges.h", "../0OPBlockCores/" ++ targetFileName]

% op typelnstances : List (String * String * String * List (String * CGen.Type * Addr * RefType))
def typelnstances = [
("main", target ++ "_Double", target, [
("inData", Const(Ptr Double), AutoAddr(Ptr(String "inData")),
Buffer(Real, Ref(String "numElements", []1))),
("numElements", Const UnsignedInt, AutoAddr(Val(String "numElements")),
Array (Ext(Int unsignedIntType))),
("nFilterSize", Const Long, AutoAddr(Val(String "nFilterSize")), Array(Ext(Int longType))),
("outData", Ptr Double, AutoAddr(Ptr(String "outData")), Buffer(Real,
BinExpr (Minus, Ref (String "numElements", []), Ref(String "nFilterSize", [1))))1)

Figure 13: Abstract Syntax for OBAverageFilter
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/* Include files */
#include "forges.h"

#include "../OPBlockCores/AverageFilter.h"

/* Function definitions */

template <>
bool AverageFilter
(const double* inData,
const unsigned numElements,
const long nFilterSize,
double* outData) {
printf ("AverageFilter_Double\n");
*(((doublex*) sp)) = 0.0;
zeros (outData, 1, numElements - nFilterSize, numElements - nFilterSize);
*(((int*) sp + 8)) = 1;
if ((*(((int*) sp + 8))) <= ((numElements - nFilterSize) + 1)) {
do {
*(((int*) sp + 12)) = 1;
while ((x(((int*) sp + 12))) <= nFilterSize) {
*(((doublex) sp)) =
(*(((double*) sp))) +
(*(inData + (((*(((int*) sp + 8))) + (*(((int*) sp + 12)))) - 2)));
*(((int*) sp + 12)) = (*(((intx) sp + 12))) + 1;
}
*(outData + ((*(((int*) sp + 8))) - 1)) =
(*(((double*) sp))) / nFilterSize;
*(((doublex) sp)) = 0.0;
*(((int*) sp + 8)) = (*(((int*) sp + 8))) + 1;
} while ((*(((int*) sp + 8))) <= ((numElements - nFilterSize) + 1));
return 1;
}

return 1;

Figure 14: Kestrel Generated Code for OBAverageFilter
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